Solvent extraction of arsenic(V) with dispersed ultrafine magnetite particles.

نویسندگان

  • Yoshito Wakui
  • Takeo Ebina
  • Hideyuki Matsunaga
  • Toshishige M Suzuki
چکیده

The solvent extraction of arsenic(V) was investigated using heptane containing ultrafine magnetite particles and hydrophobic ammonium salt. Arsenic(V) was favorably extracted from aqueous solutions of pH ranging over 2-7, where the distribution ratio (10(3)) was independent of the pH. Although the addition of alkyl ammonium salt improved the phase separation, no notable influence was observed on the extraction of arsenic(V). Oleic acid suppressed the distribution ratio of arsenic(V) when the concentration exceeded 10(-2) M. Sulfate did not interfere with the extraction, while the presence of more than 10(-3) M phosphate decreased the distribution ratio. Metal cations including calcium(II), manganese(II), cobalt(II), nickel(II), copper(II), zinc(II) and lanthanum(III) did not give any serious interference up to the 10(-4) M level. According to equilibrium and kinetic studies, the extraction of arsenic(V) can be interpreted by the adsorption of H2AsO4- onto the surface of dispersed magnetite particles. The relationship between the amount of arsenic(V) extracted in the organic phase and that remaining in an aqueous phase followed a Langmuir-type equilibrium equation. The maximum uptake capacity was determined to be 4.8 x 10(-4) mol/g-magnetite (36 mg As/g). The arsenic(V) extracted in the organic phase was quantitatively recovered by back-extraction with an alkaline solution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Highly Efficient Arsenic Removal Using a Composite of Ultrafine Magnetite Nanoparticles Interlinked by Silane Coupling Agents

Arsenic (As) contamination in groundwater is a great environmental health concern and is often the result of contact between groundwater and arsenic-containing rocks or sediments and from variation of pH and redox potentials in the subsurface. In the past decade, magnetite nanoparticles (MNPs) have been shown to have high adsorption activity towards As. Alerted by the reported cytotoxicity of 5...

متن کامل

Magnetite to Maghemite Transformation in Ultrafine Particles

The conversion of magnetite to maghemite has been studied kinetically in the ultrafine particle range (77-220A) by chemical analysis. X-ray diffraction, and Mossbauer measurements. The reaction is third order. The activation temperatures are relatively low (8 250-1 1 200 K). Electron hopping in ultrafine magnetite powders is discussed on the basis of the results.

متن کامل

A New and Efficient Method for the Adsorption and Separation of Arsenic Metal Ion from Mining Waste Waters of Zarshouran Gold Mine by Magnetic Solid-Phase Extraction with Modified Magnetic Nanoparticles

Widespread arsenic contamination of mining wastewater of Zarshouran (West Azerbaijan province) has led to a massive epidemic of arsenic poisoning in the whole of surrounding areas. It is estimated that approximately all agriculture fields are being irrigated with the water that its arsenic concentrations elevated above the World Health Organization’s standard of 10 parts per billion. A novel ad...

متن کامل

Arsenic and chromium removal by mixed magnetite-maghemite nanoparticles and the effect of phosphate on removal.

Adsorption of arsenic and chromium by mixed magnetite and maghemite nanoparticles from aqueous solution is a promising technology. In the present batch experimental study, a commercially grade nano-size 'magnetite', later identified in laboratory characterization to be mixed magnetite-maghemite nanoparticles, was used in the uptake of arsenic and chromium from different water samples. The inten...

متن کامل

Removal of Arsenate from Aqueous Solution Using Nanoscale Iron Particles

Removal of As(V) using nanoscale iron particles was examined in batch reactors. Nanoscale iron particles, utilizing zerovalent iron with a diameter less than 100 nm as reactive materials, have been demonstrated to effectively remediate a wide variety of common environmental contaminants. In this study, characterization of nanoscale iron particles and their corrosion products was conducted using...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical sciences : the international journal of the Japan Society for Analytical Chemistry

دوره 18 7  شماره 

صفحات  -

تاریخ انتشار 2002